novomarusino.ru

Чертеж для бжд расчет коэффициента защиты. Безопасность жизнедеятельности: Расчет производственного освещения, Курсовая работа

Задание: Произвести расчет общего освещения.

Дано:

Решение:

Воспользуемся обратным методом. Используем метод коэффициента светового потока:

где Кz = 1,4 (т.к. преобладает небольшая запылённость),

Z - отношение средней освещенности к минимальной, значение которого для ламп накаливания и ДРЛ-1,15; для газоразрядных ламп-1,1;

Вычислим индекс формы помещения:

Выбираем: Ен=150 (лк) - для газоразрядных ламп;

С помощью индекса формы помещения находим з=44% - для светильников ОД.

Количество светильников: n=2;

Для нашего помещения выбираем люминесцентные лампы ЛДЦ 80, со световым потоком Fл=3560 (лм) каждой лампы.

Рассчитаем количество светильников в помещении:

При этом мощность осветительной установки равна:

Р л = 80 Вт;

Список используемой литературы

1. Золотогоров В.Г. Энциклопедический словарь по экономике. - Минск, 1997.

2. Адамчук В.В. Организация и нормирование труда. Учебное пособие. - 2003.

3. ГОСТ 12.4.009.83. Правилами пожарной безопасности в Российской Федерации.

4. ГОСТ 12.4.026. Цвета сигнальные, знаки безопасности и разметка сигнальная.

5. СНиП II-4. Правила устройства электроустановок.

6. ГОСТ 12.1.005-88. Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны.

7. Белов С.В., Сивков В.П. и др. Учебник по БЖД.

8. ГОСТ 13385-78. Обувь специальная диэлектрическая из полимерных материалов.

9. ГОСТ 12.4.183-91, ТУ 38305-05-257-89. Перчатки диэлектрические без шва.

10. ГОСТ 12.4.183-91, ТУ 38.306-5-63-97. Перчатки резиновые диэлектрические бесшовные.

11. ГОСТ 4997-75. Ковры диэлектрические резиновые. Технические условия.

12. Белов С.В. Безопасность жизнедеятельности. - Высшая школа, 2000.

13. ГОСТ 1402-69. Опознавательные краски.

15. ГОСТ 5044-79. Барабаны стальные тонкостенные для химических продуктов. Технические условия.

Безопасность жизнедеятельности

Методические указания к выполнению индивидуальных заданий

для студентов дневного и заочного обучения всех специальностей

Санкт-Петербург

Безопасность жизнедеятельности.

Расчёт искусственного освещения. Методические указания к выполнению индивидуальных заданий для студентов дневного и заочного обучения всех специальностей. –

Составитель преподаватель И.В.Чирухина

РАСЧЁТ ИСКУССТВЕННОГО ОСВЕЩЕНИЯ

Правильно спроектированное и рационально выполненное освещение производственных помещений оказывает положительное воздействие на работающих, способствует повышению эффективности и безопасности труда, снижает утомление и травматизм, сохраняет высокую работоспособность.

Основной задачей светотехнических расчётов для искусственного освещения является определение требуемой мощности электрической осветительной установки для создания заданной освещённости.

В расчётном задании должны быть решены следующие вопросы:

Выбор системы освещения;

Выбор источников света;

Выбор светильников и их размещение;

Выбор нормируемой освещённости;

Расчёт освещения методом светового потока.

I. ВЫБОР СИСТЕМЫ ОСВЕЩЕНИЯ

Для производственных помещений всех назначений применяются системы общего (равномерного или локализованного) и комбинированного (общего и местного) освещения. Выбор между равномерным и локализованным освещением проводится с учётом особенностей производственного процесса и размещения технологического оборудования. Система комбинированного освещения применяется для производственных помещений, в которых выполняются точные зрительные работы. Применение одного местного освещения на рабочих местах не допускается.

В данном расчётном задании для всех помещений рассчитывается общее равномерное освещение.

2. ВЫБОР ИСТОЧНИКОВ СВЕТА

Источники света, применяемые для искусственного освещения, делят на две группы – газоразрядные лампы и лампы накаливания.

Для общего освещения, как правило, применяются газоразрядные лампы как энергетически более экономичные и обладающие большим сроком службы. Наиболее распространёнными являются люминесцентные лампы. По спектральному составу видимого света различают лампы дневного света (ЛД), дневного света с улучшенной цветопередачей (ЛДЦ), холодного белого (ЛХБ), тёплого белого (ЛТБ) и белого цвета (ЛБ) . Наиболее широко применяются лампы типа ЛБ. При повышенных требованиях к передаче цветов освещением применяются лампы типа ЛХБ, ЛД, ЛДЦ. Лампа типа ЛТБ применяется для правильной цветопередачи человеческого лица.

Основные характеристики люминестцентных ламп приведены в таблице 1.

Кроме люминесцентных газоразрядных ламп (низкого давления) в производственном освещении применяют газоразрядные лампы высокого давления, например, лампы ДРЛ (дуговые ртутные люминесцентные) и др., которые необходимо использовать для освещения более высоких помещений (6-10м).

Таблица 1

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЛЮМИНЕСЦЕНТНЫХ ЛАМП

Использование ламп накаливания допускается в случае невозможности или технико-экономической нецелесообразности применения газоразрядных ламп.

3. ВЫБОР СВЕТИЛЬНИКОВ И ИХ РАЗМЕЩЕНИЕ

При выборе типа светильников следует учитывать светотехнические требования, экономические показатели, условия среды.

Наиболее распространёнными типами светильников для люминесцентных ламп являются:

Открытые двухламповые светильники типа ОД, ОДОР, ШОД, ОДО, ООД – для нормальных помещений с хорошим отражением потолка и стен, допускаются при умеренной влажности и запылённости.

Светильник ПВЛ – является пылевлагозащищённым, пригоден для некоторых пожароопасных помещений: мощность ламп 2х40Вт.

Плафоны потолочные для общего освещения закрытых сухих помещений :

Л71Б03 – мощность ламп 10х30Вт;

Л71Б84 – мощность ламп 8х40Вт.

Основные характеристики светильников с люминесцентными лампами приведены в таблице 2.

Размещение светильников в помещении определяется следующими размерами, м:

Н – высота помещения;

h c – расстояние светильников от перекрытия (свес);

h n = H - h c – высота светильника над полом, высота подвеса;

h p – высота рабочей поверхности над полом;

h =h n – h p – расчётная высота, высота светильника над рабочей поверхностью.

Для создания благоприятных зрительных условий на рабочем месте, для борьбы со слепящим действием источников света введены требования ограничения наименьшей высоты светильников над полом (табл.3);

L – расстояние между соседними светильниками или рядами (если по длине (А) и ширине (В) помещения расстояния различны, то они обозначаются L A и L B),

l – расстояние от крайних светильников или рядов до стены.

Таблица 2

Основные характеристики некоторых светильников

с люминесцентными лампами

Оптимальное расстояние l от крайнего ряда светильников до стены рекомендуется принимать равным L/3.

Наилучшими вариантами равномерного размещения светильников являются шахматное размещение и по сторонам квадрата (расстояния между светильниками в ряду и между рядами светильников равны).

При равномерном размещении люминесцентных светильников последние располагаются обычно рядами – параллельно рядам оборудования. При высоких уровнях нормированной освещённости люминисцентные светильники обычно располагаются непрерывными рядами, для чего светильники сочленяются друг с другом торцами.

Интегральным критерием оптимальности расположения светильников является величина l = L/h, уменьшение которой удорожает устройство и обслуживание освещения, а чрезмерное увеличение ведёт к резкой неравномерности освещённости. В таблице 4 приведены значения l для разных светильников.

Таблица 3

Наименьшая допустимая высота подвеса светильников

с люминесцентными лампами

Таблица 4

Наивыгоднейшее расположение светильников

Расстояние между светильниками L определяется как:

Необходимо изобразить в масштабе в соответствии с исходными данными план помещения, указать на нём расположение светильников (см. рис. 1) и определить их число.

4. ВЫБОР НОРМИРУЕМОЙ ОСВЕЩЁННОСТИ

Основные требования и значения нормируемой освещённости рабочих поверхностей изложены в СНиП 23-05-95. Выбор освещённости осуществляется в зависимости от размера объёма различения (толщина линии, риски, высота буквы), контраста объекта с фоном, характеристики фона. Необходимые сведения для выбора нормируемой освещённости производственных помещений приведены в таблице 5.

Таблица 5

Нормы освещённости на рабочих местах производственных помещений

при искусственном освещении (по СНиП 23-05-95)

Характеристика зрительной работы Наименьший размер объекта различения, мм Разряд зритель-ной работы Подразряд зрительной работы Контраст объекта с фоном Характе-ристика фона Искусственное освещение
Освещённость, лк
При системе комбинированного освещения при системе общего освещения
всего в том числе от общего
Наивысшей точности Менее 0,15 I а Малый Темный 5000 4500 - -
б Малый Средний Средний Тёмный
в Малый Средний Большой Светлый Средний Тёмный
г Средний Большой « Светлый « Средний
Очень высокой точности От 0,15 до 0,30 II а Малый Тёмный - -
б Малый Средний Средний Тёмный
в Малый Средний Большой Светлый Средний Тёмный
г Средний Большой « Светлый Светлый Средний
Высокой точности Св. 0,30 до 0,50 III а Малый Тёмный
б Малый Средний Средний Тёмный
в Малый Средний Большой Светлый Средний Тёмный
г Средний Большой « Светлый « Средний

Продолжение таблицы 5

Средней точности Св. 0,5 до 1,0 IV а Малый Тёмный
б Малый Средний Средний Темный
в Малый Средний Большой Светлый Средний Темный
г Средний Большой « Светлый « Средний - -
Малой точности Св. 1 до 5 V а Малый Темный
б Малый Средний Средний Темный - -
в Малый Средний Большой Светлый Средний Темный - -
г Средний Большой « Светлый « Средний - -
Грубая (очень малой точности) Более 5 VI Независимо от характеристик фона и контраста объекта с фоном - -

5. РАСЧЁТ ОБЩЕГО РАВНОМЕРНОГО ОСВЕЩЕНИЯ

Расчёт общего равномерного искусственного освещения горизонтальной рабочей поверхности выполняется методом коэффициента светового потока, учитывающим световой поток, отражённый от потолка и стен.

Световой поток лампы накаливания или группы люминесцентных ламп светильника определяется по формуле:

Ф = Е н × S × K з × Z *100/ (n × h),

где Е н – нормируемая минимальная освещённость по СНиП 23-05-95, лк;

S – площадь освещаемого помещения, м 2 ;

K з – коэффициент запаса, учитывающий загрязнение светильника (источника света, светотехнической арматуры, стен и пр., т.е. отражающих поверхностей), (наличие в атмосфере цеха дыма), пыли (табл. 6);

Z – коэффициент неравномерности освещения, отношение Е ср. /Е min . Для люминесцентных ламп при расчётах берётся равным 1,1;

n – число светильников;

h - коэффициент использования светового потока, %.

Коэффициент использования светового потока показывает, какая часть светового потока ламп попадает на рабочую поверхность. Он зависит от индекса помещения i, типа светильника, высоты светильников над рабочей поверхностью h и коэффициентов отражения стен r с и потолка r n .

Индекс помещения определяется по формуле

Коэффициенты отражения оцениваются субъективно (табл. 7).

Значения коэффициента использования светового потока h светильников с люминесцентными лампами для наиболее часто встречающихся сочетаний коэффициентов отражения и индексов помещения приведены в таблице 8.

Рассчитав световой поток Ф, зная тип лампы, по таблице 1 выбирается ближайщая стндартная лампа и определяется электрическая мощность всей осветительной системы. Если необходимый поток светильника выходит за пределы диапазона (-10 ¸+20%), то корректируется число светильников n либо высота подвеса светильников.

При расчете люминесцентного освещения, если намечено число рядов N, которое подставляется в формулу вместо n, под Ф следует подразумевать световой поток светильников одного ряда. Число светильников в ряду n определяется как

где Ф 1 – световой поток одного светильника.

Таблица 6

Коэффициент запаса светильников люминесцентными лампами

Таблица 7

Значение коэффициентов отражения потолка и стен


Таблица 8


Похожая информация.


Работник при выполнении операций на токарном и фрезерном станках в механическом цеху подвергаются воздействию целого ряда опасных и вредных для здоровья факторов. Рассчитаем величину некоторых из них.

В механическом цеху предприятия ООО «СЭПО-ЗЭМ» используется для освещения люминесцентная лампа ЛСП 02. По ГОСТ 6825-74 люминесцентной лампе ЛСП 02 соответствует световой поток Фл = 3380 лм. Число ламп в светильнике - 2 штуки, число светильников - 20 штук. Рассчитаем световой поток одной лампы и определим подходит ли данный тип лампы для данного помещения по нормам безопасности.

Освещенность в механическом цеху Е, лк определяется из формулы:

где Е - освещенность цеха лк;

S - площадь помещения, м 2 ;

К - коэффициент запаса, учитывающий загрязнение светильников и наличие в воздухе пыли, дыма, копоти, К = 1,8;

z - поправочный коэффициент, учитывающий неравномерность освещения; z = 1,1;

з - коэффициент использования светового потока ламп, зависящий от КПД и кривой распределения силы света светильника, коэффициента отражения потолка сп, стен сс и пола?р (сп = 50 %, сс = 30 %, ?р = 10%), высоты подвеса светильника и показателя помещения i;

N - число светильников, шт;

m - число ламп в светильнике, шт, m = 2

где А и В - два характерных размера помещения, м; А = 20 м, В = 10м;

Нр - высота светильников над рабочей поверхностью, м.

Нр = Н - hc - hp

где Н - общая высота помещения, м, Н = 9 м;

hc - высота от потолка до нижней части светильника, м, hc = 0,8 м;

hp - высота от пола до освещаемой поверхности, м, hp = 0,8 м.

Нр = 10 - 0,8 - 0,8 = 8,4 м.

Следовательно, з = 0,3

Уровни освещенности для сборочных работ установлены в соответствии с действующими нормативными документами для люминесцентных ламп 150 лк. Следовательно, используемая лампа не нарушает безопасность и соответствует необходимому освещению.

В результате проведенных расчетов установлено, что освещенность соответствует требуемым нормам.

Оценка уровня шума.

Уровень звуковой мощности фрезерного центра Vturn-X200 - 76 дБ. Произведем расчет уровня интенсивности шума станка по формуле:

L w - уровень звуковой мощности источника, дБ;

Ф - фактор направленности шума (энергия звука излучается во всех направлениях одинаково, Ф=1);

r - расстояние до источника, м;

ч - коэффициент, учитывающий размеры источника;

ш - коэффициент, учитывающий характер звукового поля в помещении и зависящий от отношения акустической постоянной B пом. B пом =11,1 по данным завода, коэффициент ш = 0,83.

Расчет интенсивности звука выполняем для точки помещения, где находится исследуемое рабочее место, находящееся на расстоянии от источников шума 0,5 м; 3,7 м; 6,9 м.

Определим уровень интенсивности звука в расчетной точке от различных источников:

· от фрезерного станка 1, r= 0,5 м, L w = 76 дБ, ч=4,1:

· от фрезерного станка 2, r= 3,7 м, L w = 76 дБ, ч=2,5:

· от фрезерного станка 3, r= 6,9 м, L w = 76 дБ, ч=1,5:

Определяем суммарный уровень интенсивности звука на рабочем месте от всех источников:

где L 1 , L 2 , L 3 - уровни интенсивности шума, создаваемые каждым источником в расчетной точке, дБ.

Согласно СН 2.2.4.2.1.8.562-96, ПДУ шума составляет суммарный уровень интенсивности звука, равный 80 дБ. Следовательно, существует превышение ПДУ на 1,2 дБ, что соответствует классу условий труда 3.1- вредный. Расчет потребного воздухообмена для удаления вредных веществ из помещения. В механическом цеху в воздухе рабочей зоны содержатся такие вредные вещества как: минеральные масла концентрацией 8 мг/м3 и оксиды железа концентрацией 9 мг/м3. Количество выделяющегося минерального масла и количество оксидов железа рассчитывается по формуле:

G = C * V * K, мг/ч

где С - фактическая концентрация вредного вещества в единице объема воздуха производственного помещения, мг/м 3 ;

V - объем помещения, м 3 ;

К - коэффициент запаса, учитывающий неравномерность распределения вредного вещества по объему помещения (от 1,5 до 2);

Количество выделяющегося минерального масла:

G 1 = 8 * 1080 * 2 = 17280 мг/ч;

Количество выделяющегося оксида железа:

G 2 = 9 * 1080 * 2 = 19440 мг/ч.

Потребный воздухообмен для удаления вредных веществ из рабочей зоны рассчитывается по формуле:

L = G / q выт - q прит,

где G - количество выделяющихся вредных веществ, мг/ч;

q выт, q прит - концентрации вредных веществ в вытяжном и приточном воздухе соответственно, мг/м3; q прит =0, т.к. в атмосферном воздухе отсутствуют минеральные масла и оксиды железа.

L м.м. = 17280 / 8 = 2160 м 3 /ч.

L окс.ж. = 19440 / 9 = 2160 м 3 /ч.

Так как потребные воздухообмены равны, принимаем 2160 м 3 /ч.

В зависимости от типа и назначения помещения устанавливаются нормы кратности воздухообмена.

где LQ - потребное количество воздухообмена, м 3 /ч; V - объем помещения, м 3 ;

К = 2160 / 1080 = 2

Потребный воздухообмен для обеспечения санитарно-гигиенических норм в токарном цехе составляет LQ = 810 м 3 /ч с кратностью 2 раз в час.

Для обеспечения воздухообмена 810 м 3 /ч используем вентилятор для общей вентиляции марки ТКК (400 В), который обеспечивает воздухообмен 900 м 3 /ч. Для обеспечения местного воздухообмена используем пылестружкоуловители марки ПСУ-2000 с производительностью 2000 м 3 /ч.

Министерство образования Российской Федерации

Томский политехнический университет

УТВЕРЖДАЮ

Декан ИЭФ

«____» _____________ 2005г.

Безопасность жизнедеятельности

Методические указания к выполнению индивидуальных заданий

«____» ________________ 2005г.

Зав. кафедрой ЭБЖ

проф., д. т.н.

Одобрено методической комиссией ИЭФ

предс. метод. комиссии

доцент, к. т.н.

«____» ______________ 2005г.

РАСЧЁТ ИСКУССТВЕННОГО ОСВЕЩЕНИЯ

Правильно спроектированное и рационально выполненное освещение производственных помещений оказывает положительное воздействие на работающих, способствует повышению эффективности и безопасности труда, снижает утомление и травматизм, сохраняет высокую работоспособность.

Основной задачей расчётов для искусственного освещения является определение требуемой мощности электрической осветительной установки для создания заданной освещённости.

В расчётном задании должны быть решены следующие вопросы:

Выбор системы освещения;


Выбор источников света;

Выбор светильников и их размещение;

Выбор нормируемой освещённости;

Расчёт освещения методом светового потока.

I. ВЫБОР СИСТЕМЫ ОСВЕЩЕНИЯ

Для производственных помещений всех назначений применяются системы общего (равномерного или локализованного) и комбинированного (общего и местного) освещения. Выбор между равномерным и локализованным освещением проводится с учётом особенностей производственного процесса и размещения технологического оборудования. Система комбинированного освещения применяется для производственных помещений, в которых выполняются точные зрительные работы. Применение одного местного освещения на рабочих местах не допускается.

В данном расчётном задании для всех помещений рассчитывается общее равномерное освещение.

2. ВЫБОР ИСТОЧНИКОВ СВЕТА

Источники света, применяемые для искусственного освещения, делят на две группы – газоразрядные лампы и лампы накаливания.

Для общего освещения, как правило, применяются газоразрядные лампы как энергетически более экономичные и обладающие большим сроком службы. Наиболее распространёнными являются люминесцентные лампы. По спектральному составу видимого света различают лампы дневного света (ЛД), дневного света с улучшенной цветопередачей (ЛДЦ), холодного белого (ЛХБ), тёплого белого (ЛТБ) и белого цвета (ЛБ) . Наиболее широко применяются лампы типа ЛБ. При повышенных требованиях к передаче цветов освещением применяются лампы типа ЛХБ, ЛД, ЛДЦ. Лампа типа ЛТБ применяется для правильной цветопередачи человеческого лица.

Основные характеристики люминестцентных ламп приведены в таблице 1.

Кроме люминесцентных газоразрядных ламп (низкого давления) в производственном освещении применяют газоразрядные лампы высокого давления, например, лампы ДРЛ (дуговые ртутные люминесцентные) и др., которые необходимо использовать для освещения более высоких помещений (6-10м).

Таблица 1

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЛЮМИНЕСЦЕНТНЫХ ЛАМП

Мощ-ность,

Напряже-ние сети,

ние на лампе, В

Ток лампы, А

Световой поток, лм

Использование ламп накаливания допускается в случае невозможности или технико-экономической нецелесообразности применения газоразрядных ламп.

3. ВЫБОР СВЕТИЛЬНИКОВ И ИХ РАЗМЕЩЕНИЕ

При выборе типа светильников следует учитывать светотехнические требования, экономические показатели, условия среды.

Наиболее распространёнными типами светильников для люминесцентных ламп являются:

Открытые двухламповые светильники типа ОД, ОДОР, ШОД, ОДО, ООД – для нормальных помещений с хорошим отражением потолка и стен, допускаются при умеренной влажности и запылённости.

Светильник ПВЛ – является пылевлагозащищённым, пригоден для некоторых пожароопасных помещений: мощность ламп 2х40Вт.


Плафоны потолочные для общего освещения закрытых сухих помещений :

Л71Б03 – мощность ламп 10х30Вт;

Л71Б84 – мощность ламп 8х40Вт.

Основные характеристики светильников с люминесцентными лампами приведены в таблице 2.

Размещение светильников в помещении определяется следующими размерами, м:

Н – высота помещения;

hc – расстояние светильников от перекрытия (свес);

hn = H - hc – высота светильника над полом, высота подвеса;

hp – высота рабочей поверхности над полом;

h =hn – hp – расчётная высота, высота светильника над рабочей поверхностью.

Для создания благоприятных зрительных условий на рабочем месте, для борьбы со слепящим действием источников света введены требования ограничения наименьшей высоты светильников над полом (табл.3);

L – расстояние между соседними светильниками или рядами (если по длине (А) и ширине (В) помещения расстояния различны, то они обозначаются LA и LB),

l – расстояние от крайних светильников или рядов до стены.

Таблица 2

Основные характеристики некоторых светильников

с люминесцентными лампами

Тип светиль-ника

Количество и мощность

Область применения

Размеры, мм

Освещение производ-ственных помещений с нормальными усло-виями среды

Для пожароопасных помещений с пыле-и влаговыделениями

Аналогично ОД

Оптимальное расстояние l от крайнего ряда светильников до стены рекомендуется принимать равным L/3.

Наилучшими вариантами равномерного размещения светильников являются шахматное размещение и по сторонам квадрата (расстояния между светильниками в ряду и между рядами светильников равны).

При равномерном размещении люминесцентных светильников последние располагаются обычно рядами – параллельно рядам оборудования. При высоких уровнях нормированной освещённости люминисцентные светильники обычно располагаются непрерывными рядами, для чего светильники сочленяются друг с другом торцами.

Интегральным критерием оптимальности расположения светильников является величина l = L/h, уменьшение которой удорожает устройство и обслуживание освещения, а чрезмерное увеличение ведёт к резкой неравномерности освещённости. В таблице 4 приведены значения l для разных светильников.

Таблица 3

Наименьшая допустимая высота подвеса светильников

с люминесцентными лампами

Таблица 4

Наивыгоднейшее расположение светильников

Расстояние между светильниками L определяется как:

Необходимо изобразить в масштабе в соответствии с исходными данными план помещения, указать на нём расположение светильников (см. рис. 1) и определить их число.

4. ВЫБОР НОРМИРУЕМОЙ ОСВЕЩЁННОСТИ

Основные требования и значения нормируемой освещённости рабочих поверхностей изложены в СНиП. Выбор освещённости осуществляется в зависимости от размера объёма различения (толщина линии, риски, высота буквы), контраста объекта с фоном, характеристики фона. Необходимые сведения для выбора нормируемой освещённости производственных помещений приведены в таблице 5.

Таблица 5

Нормы освещённости на рабочих местах производственных помещений

при искусственном освещении (по СНиП)

Характеристика зрительной работы

Наименьший размер объекта различения,

Разряд зритель-ной работы

Подразряд зрительной работы

Контраст объекта с фоном

Характе-ристика фона

Искусственное освещение

Освещённость, лк

При системе комбинированного освещения

при системе общего освещения

в том числе от общего

Наивысшей точности

точности

Высокой точности

Продолжение таблицы 5

точности

точности

Грубая (очень малой точности)

Независимо от характеристик фона и контраста объекта с фоном

5. РАСЧЁТ ОБЩЕГО РАВНОМЕРНОГО ОСВЕЩЕНИЯ

Расчёт общего равномерного искусственного освещения горизонтальной рабочей поверхности выполняется методом коэффициента светового потока, учитывающим световой поток, отражённый от потолка и стен.

Световой поток лампы накаливания или группы люминесцентных ламп светильника определяется по формуле:

Ф = Ен × S × Kз × Z *100/ (n × h),

где Ен – нормируемая минимальная освещённость по СНиП, лк;

S – площадь освещаемого помещения, м2;

Kз – коэффициент запаса, учитывающий загрязнение светильника (источника света, светотехнической арматуры, стен и пр., т. е. отражающих поверхностей), (наличие в атмосфере цеха дыма), пыли (табл. 6);

Z – коэффициент неравномерности освещения, отношение Еср./Еmin. Для люминесцентных ламп при расчётах берётся равным 1,1;

n – число светильников;

h - коэффициент использования светового потока, %.

Коэффициент использования светового потока показывает, какая часть светового потока ламп попадает на рабочую поверхность. Он зависит от индекса помещения i, типа светильника, высоты светильников над рабочей поверхностью h и коэффициентов отражения стен rс и потолка rn.

Индекс помещения определяется по формуле

Коэффициенты отражения оцениваются субъективно (табл. 7).

Значения коэффициента использования светового потока h светильников с люминесцентными лампами для наиболее часто встречающихся сочетаний коэффициентов отражения и индексов помещения приведены в таблице 8.

Рассчитав световой поток Ф, зная тип лампы, по таблице 1 выбирается ближайщая стндартная лампа и определяется электрическая мощность всей осветительной системы. Если необходимый поток светильника выходит за пределы диапазона (-10 ¸+20%), то корректируется число светильников n либо высота подвеса светильников.

При расчете люминесцентного освещения, если намечено число рядов N, которое подставляется в формулу вместо n, под Ф следует подразумевать световой поток светильников одного ряда. Число светильников в ряду n определяется как

где Ф1 – световой поток одного светильника.

Таблица 6

Коэффициент запаса светильников люминесцентными лампами

Таблица 7

Значение коэффициентов отражения потолка и стен

Состояние потолка

Состояние стен

Свежепобеленный

Побеленный, в сырых помещениях

Чистый бетонный

Светлый деревянный (окрашенный)

Бетонный грязный

Деревянный неокрашенный

Грязный (кузницы, склады)

Свежепобеленные с окнами, закрытыми шторами

Свежепобеленные с окнами без штор

Бетонные с окнами

Оклеенные светлыми обоями

Кирпичные неоштукатуренные

С тёмными обоями

Таблица 8

Коэффициенты использования светового потока светильников с люминесцентными лампами

Тип светильника

Правильно организованное освещение производственных помещений весьма благотворно отражается на работоспособности персонала и его здоровье. Недостаток света, наоборот, приводит к утомляемости и раздражительности человека. Кроме того, при длительном нахождении в плохого расчёта освещения в помещении от чрезмерного напряжения глаз падает уровень остроты зрения. Слишком яркий свет может привести к фотоожогам глаз, перевозбуждению нервной системы и прочим неприятностям.

Поэтому вопрос рационального освещения рабочей зоны настолько важен, что для его нормирования разработаны санитарные и строительные нормативы. Соблюдение их требований обязательны для проектировщиков и руководителей предприятий.

Правильное освещение производственного помещения

  • общим;
  • местным;
  • комбинированным.

Местное освещение само по себе не используется, его применяют только в комбинации с общим. Подходящий для этого осветительный прибор может быть переносным или стационарным. Световое пятно от него не освещает даже прилегающие к нему площади.

Комбинированный метод освещенности здания

Комбинированное – требуется при выполнении рабочим высокоточных операций, не допускающих возникновения резких теней от каких-либо предметов.

Только комбинированное освещение может обеспечить соблюдение норм БЖД на предприятии

Общее – организуется в цехах с однотипными работами (например, в литейных). Встречаются случаи, когда комбинированное освещение просто нет возможности организовать.

Установленная освещенность для рабочих мест с мелкими работами соответствует 500-м Лк, постепенно снижаясь до 50 Лк в различных хранилищах.

Для максимальной экономичности, можно осветить технические или уличные территории приборами с .

Общая методика расчета

Расчетом параметров осветительной системы занимается инженер-электрик (проектировщик). Он может выполнить эту работу одним из трех способов:

  • через коэффициент использования потока света;
  • установки удельной мощности;
  • точечным.

Первым способом рассчитывается общее (равномерное) освещение рабочих поверхностей, расположенных в горизонтальной плоскости. В процессе работы вычисляется коэффициент для отдельно взятого помещения. В методике учитываются геометрические размеры производственного участка и степень светового отражения поверхностей.

Расчет через удельную мощность. Способ светотехнического расчета через удельную мощность используется только для предварительной прикидки установленной мощности осветительных установок, так как дает весьма приближенный результат.

Такие данные часто требуются для заполнения опросных листов, которые используются при получении технических условий или при составлении сметной стоимости монтажа осветительной системы предприятия.

Точечный метод. Такой способ пригоден для расчета освещения – локализованного и общего – при наличии осветительных приборах прямого света. На него не влияет пространственная ориентация анализируемой поверхности. Освещенность подсчитывают в каждой точке поверхности для каждого источника света в отдельности.

Реализация точечного метода представляет собой очень трудоемкий процесс, но и точность результата высокая. Правда, она зависит от добросовестности специалиста, выполняющего анализ.

Как рассчитать алгоритм

Расчет освещения участков производственных предприятий производится в следующей последовательности :

  • выбирается система освещения;
  • обосновывается нормированная освещенность каждого рабочего места;
  • выбирается наиболее рациональный и экономичный светильник;
  • оцениваются коэффициенты неравномерности освещения, запаса освещенности, отражения поверхностей, находящихся внутри помещения.

После этого рассчитываются:

  • индекс помещения;
  • коэффициент использования светового потока;
  • необходимое количество светильников;
  • На заключительном этапе выполняется чертеж или эскиз, на котором размечается расположение всех светильников.

Искусственный свет от люминесцентных ламп на производстве

А чтобы люминесцентные приборы долго светили и давали свет, установленной производителем яркости, необходимо использовать – .

Как рассчитывается норма КЕО

Естественный свет – величина непостоянная, потому и нормируется он не по освещенности, а по ее коэффициенту (КЕО). Он рассчитывается по формуле:

Е = (Ев/Ен) х 100 , %, где:

  • Ев – естественная освещенность точки, расположенной внутри помещения;
  • Ен – наружная освещенность (горизонтальная) при небосводе, открытом полностью.

Очередность шагов

Первым делом выбирается система освещения. Оно может быть боковым, верхним или комбинированным. Выбор зависит от назначения производственного помещения с обязательным учетом особенностей технологического процесса.

Нормированное значение КЕО выбирается по таблице СНиП 23-05-95. Его величина зависит от разряда зрительной работы (а разряд определяется в зависимости от величины самого мелкого элемента, с которым приходится работать рабочему).

Величина Ен корректируется в зависимости от района расположения производственного объекта.

КЕО снижается из-за запыленности поверхностей, пропускающих свет. Для учета степени загрязненности остекления выбирается коэффициент запаса Кз.

Световая характеристика проемов определяется в соответствии с:

  • соотношением длины и глубины помещения, глубины и высоты (от уровня рабочей поверхности до верхней границы окна) – при боковом освещении;
  • соотношением длины и ширины помещения, его высоты и ширины и типа фонаря – при верхнем освещении.

При боковом освещении нормируется КЕО (его минимальное значение) для рабочего места, наиболее удаленного от окна. При верхнем или комбинированном – нормированный показатель является средним для пяти точек, равноудаленных друг от друга и расположенных на рабочей поверхности.

Целью расчета естественного освещения является определение площади оконных проемов.

Если рабочее место расположено менее чем в двенадцати метрах от окна, достаточно одностороннего освещения. При увеличении расстояния свыше 12 метров необходимо обеспечить рабочую точку двухсторонним боковым освещением.

Примеры

Попробуем разобраться с методами расчета естественной и искусственной освещенности на простейших примерах.

Естественный свет

Имеется помещение длиной L = 10 м, шириной B – 10 м, высотой H -5 м. оконный проем имеет размеры 4х3,5 м с двойным остеклением.

По условиям задачи помещение расположено в третьем световом поясе. Точность зрительной работы персонала – высокая.

Нормированное значение КПО – 2% .

Окна ориентированы на север, они обеспечивают КЕО не менее 1,5% .

Для обеспечения КПО 2% необходимо наличие в помещении трех окон общей площадью 42 кв.м.

Искусственный свет

Дано помещение с геометрическими размерами 8х6х3,5 м. Нормируемая освещенность для данного производства – 300 лк.

Напряжение в сети предприятия – 220 В, предполагается использовать (коэффициент использования светового потока – 49%). Отражательная способность:

  • потолка -0,7;
  • стен – 0,5;
  • рабочей поверхности – 0,3.

Коэффициенты :

  • запаса Кз = 1,75;
  • неравномерности освещения – 1,1.

Разряд зрительных работ, выполняемых персоналом в данном помещении – III.

Рабочая поверхность КРЛ размещена на высоте 0,8 м, высота свеса – 0,1 м.

Площадь участка составляет 48 кв. м.

Индекс помещения (S/(H1 – H2) (L+B) = 48/(3,5 – 0,8) (8 + 6) = 1,26

Коэффициент использования (в соответствии с коэф. отражения поверхностями и индексом помещения) составляет 51.

Количество светильников N = (500 х 48 х 100х1,75)/(51 х 4 х 1150) = 17,9

Округлив результат, получим необходимое количество светильников, равное 18 шт.

Расположение осветительных приборов и их количество

Светильники могут размещаться с учетом, либо без учета размещения рабочих мест.

Если выбирается за основу система равномерного освещения цеха, они располагаются высоко от рабочих поверхностей, могут оснащаться дополнительными отражателями. Поток света иногда направляется не только вниз, но и вверх или в стороны.

При организации комбинированного освещения местные светильники устанавливаются на каждом рабочем месте.

Световой поток от местного осветительного прибора не должен попадать в поле зрения работающего.

В качестве источника света в производственных помещениях могут использоваться лампы различных типов : люминесцентные (наиболее часто применяемые), газоразрядные, накаливания.

О характеристиках светового потока лампы накаливания читайте в .

Расчет люминесцентного освещения сводится к определению количества рядов светильников и их число в каждом ряду. При разработке проекта освещения с использованием прочих типов ламп (газоразрядных, накаливания) количество светильников известно, расчетом определяется мощность одной лампы.

Немного об экономике

Владельца предприятия волнует не только комфорт рабочего персонала: для него важно снизить при этом потребление электроэнергии. Достичь этой цели можно разными путями:

  • применить более мощные осветительные приборы, уменьшив за счет этого их количество;
  • использовать приборы с пониженным тепловыделением, что позволит сэкономить на кондиционировании цеха;
  • уменьшить затраты на обслуживание светильников. Сейчас на многих заводах практикуется единовременная замена всех источников света в цехе по мере приближения к завершению срока их службы.

Перспективным вариантом является применение светодиодных светильников. отвечает всем требованиям энергосбережения, долговечны и не требуют текущего обслуживания.

Видео

Данное видео расскажет Вам как можно рассчитать освещение на производстве.

Поскольку от правильности расчета освещения производственного участка зависит в конечном итоге производительность персонала (не говоря о его здоровье), то данную работу должны выполнять опытные профессионалы. Самостоятельно рассчитать необходимое количество светильников, их мощность и определить рациональное размещение, не имея никакого опыта в этом вопросе, невозможно.



Загрузка...